Printed Page:-		Subject Code:- BMICSE0403 Roll. No:				
NOID		ND TECHNOLOGY, GREATER NOIDA				
(An Autonomous Institute Affiliated to AKTU, Lucknow)						
		ech (Int.)				
SEM: IV - THEORY EXAMINATION (20 20) Subject: Operating Systems						
Time:	Time: 2 Hours Max. Marks: 50					
General	Instructions:					
		aper with the correct course, code, branch etc.				
		s -A, B, & C. It consists of Multiple Choice				
	ns (MCQ's) & Subjective type questions. Thum marks for each question are indicated	I on right hand side of each question				
	ate your answers with neat sketches where					
	ne suitable data if necessary.	,				
	rably, write the answers in sequential orde	r.				
	eet should be left blank. Any written mater	ial after a blank sheet will not be				
evaluated	d/checked.					
CECTIO	NRT A	15				
SECTIO		15				
1. Attem	pt all parts:-					
1-a.	Real-time operating systems are primaril	y designed to handle (CO1, K1)				
(2	a) General-purpose tasks					
(t	b) Time-sensitive processing					
(0	c) File system management					
(0	d) User-level processes					
1-b.	1-b. Choose the CPU scheduling algorithm that yields the lowest average waiting time.					
	(CO2, K1)					
(2	a) FCFS					
(t	b) SJF					
(0	c) Round Robin					
(0	d) Priority Scheduling					
1-c.	A binary semaphore can have the follow	ing values (CO3, K1)				
(2	a) Any integer value					
(t	b) 0 and 1					
(0	c) Only positive integers					
(0	d) None of the above					
1-d.	Variable partitioning suffers from (CO4,	K1) 1				
(2	a) Internal fragmentation					
(t	b) External fragmentation					
(t	b) External fragmentation					

	(c)	Inrasning			
	(d)	Segmentation fault			
1-e.	G	PUs are optimized for (CO5, K1)	1		
	(a)	Parallel computation			
	(b)	Disk management			
	(c)	Sequential task execution			
	(d)	Cache memory management			
2. Att	empt a	ıll parts:-			
2.a.	D	efine Kernel? (CO1, K1)	2		
2.b.	D	escribe the role of the dispatcher in process scheduling. (CO2, K1)	2		
2.c.	D	Define process synchronization in operating system. (CO3, K1)			
2.d.	Ex	Explain the term "page fault" in demand paging. (CO4, K2)			
2.e.	Ex	xplain the term rotational latency. (CO5, K2)	2		
SECT	ION-	<u>B</u>	15		
3. Ans	swer a	ny three of the following:-			
3-a.	W	rite a shell script program to find greatest among three numbers. (CO1, K4)	5		
3-b.	Ex	Explain the various components Process Control Block (PCB). (CO2, K2)			
3.c.	St K	ate dining philosopher's problem and give a solution using semaphores. (CO3, 2)	5		
3.d.	Ex	explain the concept of paging with their advantages & disadvantages. (CO4, K2)	5		
3.e.		Explain the file access mechanism with their advantages and disadvantages. (CO5, K2)			
SECT	ION-	<u>C</u>	20		
4. Ans	swer a	ny <u>one</u> of the following:-			
4-a.		Explain the multi-programming and multitasking operating system with their advantages & disadvantages. (CO1,K2)			
4-b.	D	escribe the different types of system call with their examples. (CO1, K2)	4		
5. Ans	swer a	ny one of the following:-			
5-a.	De	efine process and also explain process states in details with diagram.(CO2, K2)	4		
5-b.		Consider the following four processes with the arrival time and CPU Burst time given in millisecond			

Process Name	Arrival Time	CPU Burst Time
P1	3	2
P2	2	5
P3	0	7
P4	1	4

Calculate the average waiting time and turnaround time by using Non Preemptive SJF CPU scheduling Algorithm. (CO2, K4).

4

4

- 6. Answer any one of the following:-
- 6-a. Explain deadlock avoidance with suitable example using banker's algorithm. (CO3, K2)
- 6-b. Explain three requirements that a solution to critical–section problem must satisfy. 4 (CO3, K2)
- 7. Answer any one of the following:-
- 7-a. Consider the following page reference string 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 4, 2, 1, 2, 3, 6. How many page faults would occurs for the Least Recently Used (LRU) Page replacement algorithms, assuming three frames initially empty? (CO4, K3)
- 7-b. Define thrashing. Explain the term locality of reference and elaborate on its usefulness in presenting thrashing. (CO4, K3)
- 8. Answer any one of the following:-
- 8-a. Explain the SCAN , LOOK and SSTF disk scheduling algorithm with example. 4 (CO5,K2)
- 8-b. Define GPU and explain its basic role in computing. (CO5, K2)

 4